3.89 \(\int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx\)

Optimal. Leaf size=164 \[ \frac{a^2 (11 A+14 B) \tan (c+d x)}{8 d \sqrt{a \cos (c+d x)+a}}+\frac{a^{3/2} (11 A+14 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{8 d}+\frac{a^2 (7 A+6 B) \tan (c+d x) \sec (c+d x)}{12 d \sqrt{a \cos (c+d x)+a}}+\frac{a A \tan (c+d x) \sec ^2(c+d x) \sqrt{a \cos (c+d x)+a}}{3 d} \]

[Out]

(a^(3/2)*(11*A + 14*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(8*d) + (a^2*(11*A + 14*B)*Ta
n[c + d*x])/(8*d*Sqrt[a + a*Cos[c + d*x]]) + (a^2*(7*A + 6*B)*Sec[c + d*x]*Tan[c + d*x])/(12*d*Sqrt[a + a*Cos[
c + d*x]]) + (a*A*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^2*Tan[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.400216, antiderivative size = 164, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.152, Rules used = {2975, 2980, 2772, 2773, 206} \[ \frac{a^2 (11 A+14 B) \tan (c+d x)}{8 d \sqrt{a \cos (c+d x)+a}}+\frac{a^{3/2} (11 A+14 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{8 d}+\frac{a^2 (7 A+6 B) \tan (c+d x) \sec (c+d x)}{12 d \sqrt{a \cos (c+d x)+a}}+\frac{a A \tan (c+d x) \sec ^2(c+d x) \sqrt{a \cos (c+d x)+a}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^4,x]

[Out]

(a^(3/2)*(11*A + 14*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(8*d) + (a^2*(11*A + 14*B)*Ta
n[c + d*x])/(8*d*Sqrt[a + a*Cos[c + d*x]]) + (a^2*(7*A + 6*B)*Sec[c + d*x]*Tan[c + d*x])/(12*d*Sqrt[a + a*Cos[
c + d*x]]) + (a*A*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^2*Tan[c + d*x])/(3*d)

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2980

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n
+ 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n + 1)
*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A
, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rule 2772

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[((b*c - a*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]]), x]
+ Dist[((2*n + 3)*(b*c - a*d))/(2*b*(n + 1)*(c^2 - d^2)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx &=\frac{a A \sqrt{a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{3} \int \sqrt{a+a \cos (c+d x)} \left (\frac{1}{2} a (7 A+6 B)+\frac{3}{2} a (A+2 B) \cos (c+d x)\right ) \sec ^3(c+d x) \, dx\\ &=\frac{a^2 (7 A+6 B) \sec (c+d x) \tan (c+d x)}{12 d \sqrt{a+a \cos (c+d x)}}+\frac{a A \sqrt{a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{8} (a (11 A+14 B)) \int \sqrt{a+a \cos (c+d x)} \sec ^2(c+d x) \, dx\\ &=\frac{a^2 (11 A+14 B) \tan (c+d x)}{8 d \sqrt{a+a \cos (c+d x)}}+\frac{a^2 (7 A+6 B) \sec (c+d x) \tan (c+d x)}{12 d \sqrt{a+a \cos (c+d x)}}+\frac{a A \sqrt{a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{16} (a (11 A+14 B)) \int \sqrt{a+a \cos (c+d x)} \sec (c+d x) \, dx\\ &=\frac{a^2 (11 A+14 B) \tan (c+d x)}{8 d \sqrt{a+a \cos (c+d x)}}+\frac{a^2 (7 A+6 B) \sec (c+d x) \tan (c+d x)}{12 d \sqrt{a+a \cos (c+d x)}}+\frac{a A \sqrt{a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac{\left (a^2 (11 A+14 B)\right ) \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{8 d}\\ &=\frac{a^{3/2} (11 A+14 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{8 d}+\frac{a^2 (11 A+14 B) \tan (c+d x)}{8 d \sqrt{a+a \cos (c+d x)}}+\frac{a^2 (7 A+6 B) \sec (c+d x) \tan (c+d x)}{12 d \sqrt{a+a \cos (c+d x)}}+\frac{a A \sqrt{a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.919483, size = 132, normalized size = 0.8 \[ \frac{a \sec \left (\frac{1}{2} (c+d x)\right ) \sec ^3(c+d x) \sqrt{a (\cos (c+d x)+1)} \left (\sin \left (\frac{1}{2} (c+d x)\right ) (4 (11 A+6 B) \cos (c+d x)+(33 A+42 B) \cos (2 (c+d x))+7 (7 A+6 B))+3 \sqrt{2} (11 A+14 B) \cos ^3(c+d x) \tanh ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )\right )}{48 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^4,x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^3*(3*Sqrt[2]*(11*A + 14*B)*ArcTanh[Sqrt[2]*Sin[(c
+ d*x)/2]]*Cos[c + d*x]^3 + (7*(7*A + 6*B) + 4*(11*A + 6*B)*Cos[c + d*x] + (33*A + 42*B)*Cos[2*(c + d*x)])*Sin
[(c + d*x)/2]))/(48*d)

________________________________________________________________________________________

Maple [B]  time = 4.168, size = 1310, normalized size = 8. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^4,x)

[Out]

1/6*a^(1/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*a*(11*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))
*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))+11*A*ln(-4/(-2*cos(1/2*d*x
+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))+14*B*ln(4/
(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*
a))+14*B*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1
/2*d*x+1/2*c)+2*a)))*sin(1/2*d*x+1/2*c)^6+12*(22*A*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+28*B*2^(1/2)
*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+33*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d
*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+33*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^
(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+42*B*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1
/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+42*B*ln(-4/(-2*cos(1
/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a)*s
in(1/2*d*x+1/2*c)^4+(-352*A*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-198*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+
2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a-198*A*ln(4/(2*co
s(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a
-384*B*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-252*B*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(
1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a-252*B*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1
/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a)*sin(1/2*d*x+1/2*c)^
2+126*A*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+33*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(
1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+33*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/
2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+108*B*2^(1/2)*(a*sin(
1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+42*B*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2
*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+42*B*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a
*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))^3/(2*cos(1/2
*d*x+1/2*c)+2^(1/2))^3/sin(1/2*d*x+1/2*c)/(cos(1/2*d*x+1/2*c)^2*a)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 1.99327, size = 531, normalized size = 3.24 \begin{align*} \frac{3 \,{\left ({\left (11 \, A + 14 \, B\right )} a \cos \left (d x + c\right )^{4} +{\left (11 \, A + 14 \, B\right )} a \cos \left (d x + c\right )^{3}\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \,{\left (3 \,{\left (11 \, A + 14 \, B\right )} a \cos \left (d x + c\right )^{2} + 2 \,{\left (11 \, A + 6 \, B\right )} a \cos \left (d x + c\right ) + 8 \, A a\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{96 \,{\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

1/96*(3*((11*A + 14*B)*a*cos(d*x + c)^4 + (11*A + 14*B)*a*cos(d*x + c)^3)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*
cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + c
os(d*x + c)^2)) + 4*(3*(11*A + 14*B)*a*cos(d*x + c)^2 + 2*(11*A + 6*B)*a*cos(d*x + c) + 8*A*a)*sqrt(a*cos(d*x
+ c) + a)*sin(d*x + c))/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 2.92349, size = 861, normalized size = 5.25 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="giac")

[Out]

1/48*(3*(11*A*a^(3/2) + 14*B*a^(3/2))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 +
a))^2 - a*(2*sqrt(2) + 3))) - 3*(11*A*a^(3/2) + 14*B*a^(3/2))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*t
an(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*sqrt(2)*(33*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan
(1/2*d*x + 1/2*c)^2 + a))^10*A*a^(5/2) + 42*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)
)^10*B*a^(5/2) - 303*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^8*A*a^(7/2) - 822*(sq
rt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^8*B*a^(7/2) + 2394*(sqrt(a)*tan(1/2*d*x + 1/2
*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*A*a^(9/2) + 3780*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*
x + 1/2*c)^2 + a))^6*B*a^(9/2) - 1806*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*A*
a^(11/2) - 2508*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*B*a^(11/2) + 309*(sqrt(a
)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*A*a^(13/2) + 498*(sqrt(a)*tan(1/2*d*x + 1/2*c)
- sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*B*a^(13/2) - 19*A*a^(15/2) - 30*B*a^(15/2))/((sqrt(a)*tan(1/2*d*x + 1/
2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2
 + a))^2*a + a^2)^3)/d